Fluoride Varnishes
A Review of Their Clinical Use, Cariostatic Mechanism, Efficacy and Safety
Eugenio D. Beltrán-Aguilar, D.M.D., M.P.H., M.S., Dr.PH.; Jonathan W. Goldstein, M.P.H., B.A.; Stuart A. Lockwood, D.M.D., M.P.H.

Fluoride-containing varnishes were developed during the late 1960s and early 1970s in an effort to improve shortcomings of existing topical fluoride vehicles, such as fluoride gels or mouthrinses, by prolonging contact of the fluoride with tooth enamel. By the 1980s, fluoride varnishes were widely used in European countries. In Denmark, for example, more than 90 percent of municipal caries-preventive programs provided fluoride varnish to children up through age 18 years. Along with other fluoride vehicles, the extensive use of fluoride varnishes has been associated with the decline in caries observed in many European countries.

Four reviews in the biomedical literature have addressed the laboratory and clinical evidence supporting fluoride varnish efficacy. We review the state of the science of fluoride varnishes, including their efficacy, cariostatic mechanism and safety, as well as their potential use to prevent dental caries in the United States.

VARNISHES AVAILABLE IN THE UNITED STATES
The three fluoride varnishes available in the United States are Duraphat (5 percent sodium fluoride, or NaF/2.26 percent fluoride, Colgate Oral Pharmaceuticals), Duraflor (5 percent NaF/2.26 percent fluoride, Pharmascience Inc.) and Fluor Protector (1 percent difluorosilane/0.1 percent fluoride, Ivoclar-Vivadent). In 1994, Duraphat was the first fluoride varnish cleared by the U.S. Food and Drug Administration, or FDA (under class II regulations, as listed in the Code of Federal Regulations, Title 21, Parts 800 to 895). Under these regulations, the FDA has cleared these products only as medical devices to be used as cavity liners and for the treatment of hypersensitive teeth. Laboratory evidence suggests that both Duraphat and Fluor Protector have properties equivalent to other dentinal tubuli sealants, but because caries prevention is considered a drug claim, manufacturers would have to submit appropriate clinical trial evidence for review by the FDA before they could be cleared as anticaries agents.

BACKGROUND
This is a review of the clinical use, cariostatic mechanism, efficacy, safety and toxicity of fluoride varnishes.

Types of Studies Reviewed.
The authors reviewed and summarized in vitro, in vivo and in situ studies; clinical trials; demonstration programs; position papers; and editorials published in English in the biomedical literature since 1966.

RESULTS
Extensive laboratory research and clinical trials conducted in Europe and elsewhere show that fluoride varnishes are as efficacious as other caries-preventive agents. Fluoride varnishes are widely used in European caries-preventive programs. The U.S. Food and Drug Administration has cleared these products only as medical devices to be used as cavity liners and for the treatment of hypersensitive teeth. These products have not yet been cleared for marketing in the United States as caries-preventive agents.

Clinical Implications.
Three fluoride varnishes are currently available in the United States. Semiannual applications are the most proven treatment regimen. Varnishes are safe and easy to apply and set in contact with intraoral moisture.
and wiping with a gauze or cotton rolls is adequate. To maximize contact between the varnish and the teeth, patients are instructed to avoid eating for two to four hours after the application and to avoid brushing their teeth the night of the application. The varnish remains on the tooth surface for several hours; microscopic evaluations of the enamel surface have shown that small blocks of varnish remain attached to enamel even after in vitro demineralization challenge and sonication.14 The only disadvantage of sodium fluoride varnishes is that they cause a temporary change in tooth color.

Fluoride varnish needs to be reapplied to maintain its caries-preventive effect.15,16 Various application schedules have been proposed and semiannual application has been tested most often.19 Annual applications of Fluor Protector have shown no significant benefit.17 Clinical trials testing four applications per year showed a wide range of caries-preventive efficacy: no differences compared with a semiannual application of Duraphat18; a 23 percent greater efficacy in proximal surfaces compared with that of a positive control (that is, Fluor Protector vs. a weekly supervised mouthrinse)19; and a 23 percent greater efficacy in proximal surfaces compared with that of a negative control.20 In addition, intensive treatment protocols using three applications of Duraphat in one week per year (over three21 and four years22) showed caries reductions of 46 to 67 percent in proximal surfaces.

TABLE

FLUORIDE CONCENTRATIONS OF FLUORIDE VARNISHES AVAILABLE IN THE UNITED STATES.

<table>
<thead>
<tr>
<th>PRODUCT NAME</th>
<th>MANUFACTURER</th>
<th>PRESENTATION</th>
<th>CONCENTRATION</th>
<th>MILLIGRAMS OF F⁻ IN TYPICAL VARNISH APPLICATION (0.3 - 0.5 MILLILITER)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duraphat</td>
<td>Colgate Oral Pharmaceuticals</td>
<td>Tube (10 mL)</td>
<td>5% sodium fluoride (2.26% F⁻, 22.6 mg/mL F⁻ or 22,600 ppm F⁻)</td>
<td>6.8 - 11.3</td>
</tr>
<tr>
<td>Duraflor</td>
<td>Pharmascience Inc.</td>
<td>Tube (10 mL)</td>
<td>5% sodium fluoride (2.26% F⁻, 22.6 mg/mL F⁻ or 22,600 ppm F⁻)</td>
<td>6.8 - 11.3</td>
</tr>
<tr>
<td>Fluor Protector</td>
<td>Ivoclar-Vivadent</td>
<td>Single dose of 0.4 mL and ampules of 1 mL</td>
<td>1% difluorosilane (0.1% F⁻, 1.0 mg/mL F⁻ or 1,000 ppm F⁻)</td>
<td>0.3 - 0.5</td>
</tr>
</tbody>
</table>

* Dosages in the table correspond to the amount of F⁻ applied in a routine varnish application, as reported in many clinical trials.20,52,64,75
† ppm: Parts per million.
‡ The chemical name of difluorosilane is 2,2(4),4-Trimethylhexamethylene-1,6-dicarbamate-[2-methoxy-4-(2-difluorohydroxysilyl)ethyl]-cyclohexane.

APPLICATION OF VARNISH

Fluoride varnishes are not intended to adhere permanently to a tooth, but to remain in close contact with enamel for several hours. Toothbrushing may be sufficient to clean the teeth before application and prophylaxis is not required.13 During application, the clinician uses a brush, a cotton-tip applicator or a syringe-type applicator (included with the product) to apply about 0.3 to 0.5 milliliters of varnish directly onto the teeth. Dental floss can be used to ensure that the varnish reaches interproximal areas. Application time is one to four minutes, depending on the number of teeth present. Because the varnish sets in contact with intraoral moisture, thorough drying is not required before application, and wiping with a gauze or cotton rolls is adequate. To maximize contact between the varnish and the teeth, patients are instructed to avoid eating for two to four hours after the application and to avoid brushing their teeth the night of the application. The varnish remains on the tooth surface for several hours; microscopic evaluations of the enamel surface have shown that small blocks of varnish remain attached to enamel even after in vitro demineralization challenge and sonication.14 The only disadvantage of sodium fluoride varnishes is that they cause a temporary change in tooth color.
LABORATORY EVIDENCE AND CARIOSTATIC MECHANISM

Calcium fluoride. The main product deposited on the enamel surface and on subsurface carious lesions after the application of topical vehicles with high fluoride content is calcium fluoride, or CaF$_2$. Topical vehicles with low fluoride concentration tend to deposit fluorapatite, or Ca$_{10}$(PO$_4$)$_6$F$_2$. While fluorapatite remains permanently bound within the crystalline structure of the enamel, most of the CaF$_2$ precipitates on the enamel surface, where it may be lost through exposure to alkaline solutions.

Numerous studies, both in vitro and in vivo, have concluded that fluoride varnishes are capable of depositing larger amounts of fluoride on human enamel. Calcium fluoride originally was considered to be an undesirable product for topical fluoride treatment because it is readily lost to saliva, but these compounds may serve as a reservoir of fluoride ions. Under specific thermodynamic circumstances and in the presence of phosphate, part of this CaF$_2$ can be redeposited as fluorapatite (that is, during remineralization). The physical presence of the varnish would facilitate the transformation. Indeed, fluoride from the varnish may produce a redistribution of ions in the body of a carious lesion, thereby creating a favorable gradient for inward fluoride diffusion and reducing the porosity of the body of the lesion. Using quantitative microradiography, Øgaard and colleagues showed a 48 percent reduction in the depth of the body of naturally produced carious lesions treated with Duraphat. Varnishes also are able to deposit fluoride in artificial carious lesions formed in dentin, opening the possibility for its use in preventing root caries.

Fluoride deposits. A comprehensive review of the in vitro and in vivo studies using Duraphat and Fluor Protector showed consistently higher fluoride uptake in enamel treated with Duraphat than in enamel treated with Duraflo.

Antibacterial effect. Only one study has tested the antibacterial effect of fluoride varnishes. In that study, Zikert and Emilson found that Duraphat did not significantly affect the levels of Streptococcus mutans in saliva and pooled dental plaque from children receiving varnish treatment. It seems, therefore, that the main cariostatic effect of fluoride varnish probably is caused by the remineralization of early carious lesions.

Proposed formulations. Besides the three fluoride varnishes available in the United States, additional formulations have been proposed, and some have undergone in vitro and in vivo testing. Most of these new formulations vary in their fluoride concentration, such as Carex (1.8 percent F as NaF; developed by A. Nord). Bifluorid 12 (VOCO Chemi GmbH) is a varnish delivering fluoride from NaF and CaF$_2$ and is marketed in Europe (2.71 percent F as NaF and 2.92 percent F as CaF$_2$). Experimental fluoride varnishes include an NaF-ethanol varnish called CDB and a lower-dose NaF (1.1 percent F). Fluoride varnishes also have been tested with chlorhexidine to determine their capacity to produce additional benefits.

CLINICAL TRIALS

Duraphat varnish. Numerous clinical trials conducted in the past 25 years outside the United States have examined the efficacy of fluoride varnishes in preventing dental caries. Numerous clinical trials conducted in the past 25 years outside the United States have examined the efficacy of fluoride varnishes in preventing dental caries.
has been the most extensively studied varnish. Studies conducted between 1968 and 1985 reported caries reductions in permanent teeth ranging from 18 to 77 percent, as reviewed by de Bruyn and Arends,9 Haffenstein and Steiner,66,67 conducted a meta-analysis of eight randomized clinical trials of Duraphat varnish that used either positive or negative controls. After ruling out the possibility of a null effect resulting from unpublished negative results, these authors fitted fixed and random statistical models. Both models estimated a 38 percent reduction in the decayed, missing or filled surfaces, or DMFS, index. A more recent clinical trial conducted in India64 against a negative control showed a caries reduction of 70 to 75 percent. Recently, Seppä and colleagues55 tested a 1.1 percent F– varnish (Duraphat) against a common 2.26 percent F– varnish, and found equivalent benefits after a three-year follow-up. Few studies have been conducted on the efficacy of Duraphat in the primary dentition, and their results are inconclusive.57-59 Two studies have reported no beneficial effects58,60 and a third study reported a 44 percent reduction in caries incidence.59 In a demonstration program involving 62 children between the ages of 12 and 24 months at high risk of developing dental caries who were treated with Duraflor, Weinstein and colleagues48 found an 8 percent reduction between baseline and follow-up (at six months) in the number of children with decayed teeth or decalcified lesions.

Fluor Protector varnish. Other clinical studies have evaluated the efficacy of Fluor Protector varnish,17,63,69-71 and in some clinical trials, Fluor Protector has been compared with Duraphat. In two experimental designs, Seppä and colleagues72 and Clark and colleagues63 found that both varnishes significantly reduced dental caries on the occlusal and buccal surfaces; however, these researchers observed that Fluor Protector had little benefit on proximal surfaces. In contrast, a recent clinical trial among 4- and 5-year-old children found that Fluor Protector had a preventive effect only on proximal surfaces of primary teeth.73 To our knowledge, there have been no reported clinical trials using Duraflor varnish.

Other topical fluorides. Some studies have compared fluoride varnishes with other topical fluoride delivery vehicles. Tewari and associates64 compared Duraphat with a 2 percent NaF solution, a 1.23 percent acidulated phosphate fluoride, or APF, gel and a negative control. They reported that after 2.5 years, the varnish resulted in a higher percentage of caries reduction (74 percent) than did the NaF solution (28 percent) and the APF gel (37 percent). In another study comparing Duraphat varnish with APF gels in children at high risk of developing dental decay, Seppä and colleagues65 found greater, but not statistically significant, efficacy of the varnish.

Other clinical trials have compared Duraphat varnish with a biweekly62,74 or weekly 0.2 percent NaF rinse62 and have compared Fluor Protector varnish with a biweekly 0.2 percent NaF rinse71 and weekly 0.05 percent NaF rinse; the results have been mixed. The clinical observation that fluoride varnishes benefit occlusal surfaces led a group of researchers to test the efficacy of Duraphat vs. dental sealants in preventing occlusal decay.76-78 In these studies, the sealants were more effective than Duraphat.

Factors to consider. In analyzing the multiple clinical trials that have tested the efficacy of fluoride varnishes, we must consider several factors. First, some studies used a split-mouth design and concern has been raised about possible crossover of fluoride varnish onto the control teeth. This effect would increase type I error (that is, failure to reject the null hypothesis when, in fact, there is a difference in the preventive effect of varnishes compared with control teeth). Second, some trials were unable to demonstrate caries reductions because they used positive controls (that is, another known
preventive agent). Lack of statistical differences in these studies does not mean lack of efficacy for the fluoride varnish, but instead comparable efficacy with the positive control. Third, some studies estimated varnish efficacy by comparing estimates of caries increments between control and test groups, others by estimating the incidence of new carious lesions during the observation period, and still others used both methods.

A fifth factor is that trials in areas in which the community drinking water is optimally fluoridated may be less able to attain a statistical difference because varnishes need to show a preventive effect in addition to that of water fluoridation. To overcome this difficulty, one research team in Finland enrolled children with high caries experience, as defined by some upper percentile in the DMFS distribution. It is interesting that Murray and associates blamed the use of subjects from populations at high risk of developing dental caries for their inability to observe significant efficacy, because most surfaces at risk already had been affected by the disease.

Finally, some clinical trials have tested fluoride varnish efficacy in children who concurrently used fluoride toothpaste or fluoride mouthrinses or who received routine oral health examinations and dental prophylaxis. In these trials, the benefit of fluoride varnish is measured in addition to the benefit provided by the other preventive techniques.

SAFETY AND TOXICITY

Two commercially available fluoride varnishes in the United States have the highest fluoride concentration of any fluoride vehicle (22,600 ppm F⁻) and are intended to be delivered by dental professionals. Despite the rapid setting time of the varnish and the small dosage used, the risk exists that young children will ingest some of the product during placement. In addition, as fluoride is released from the varnishes after treatment, some fluoride will be ingested. Roberts and Longhurst reported that a mean of 5.2 mg F⁻ (range, 0.7 to 14.5 mg F⁻) was applied to 111 children (2 to 14 years of age) by 39 operators. They observed little variation in the amount of varnish applied, according to age of the child, but as the number of teeth increased, less fluoride was applied to each tooth. According to the authors, no child received acute toxic levels (that is, 1 mg F⁻ per kilogram of body weight).

Ekstrand and associates conducted analyses of plasma fluoride concentrations in four children (ages 4, 5, 12 and 14 years) after Duraphat varnish was applied. The amount of varnish applied ranged from 2.3 to 5.0 mg. Peak plasma fluoride concentrations of 3.2 to 6.3 micromolar were found within two hours of treatment, followed by a rapid two-hour decrease and a slower decrease thereafter. These levels were comparable with those found after brushing with a fluoridated toothpaste (mean ± standard deviation, 3.63 ± 0.45 µmol/L) or after ingesting a 1-mg F⁻ tablet (4.47 ± 0.47 µmol/L), and were considerably lower than those reported for APF gels (16 to 76 µmol/L). These data indicate that the risk of acute toxic reactions with the varnishes is minimal. In addition, the risk of dental fluorosis is minimal because children are not frequently exposed to fluoride varnishes, as they are to fluoride supplements.

Two cases of contact allergy to Duraphat varnish have been reported: one is a case of dermatitis in a dental assistant’s hand, and the other is a case of a stomatitis in a patient. These allergies were likely related to the colophony component of the varnish. The manufacturer of Fluor Protector claimed that a short-term burning sensation is a side effect if the varnish comes into contact with the gingival tissue. In product advertisements, the manufacturer of Duraphat claims that the use of varnish in patients with ulcerative gingivitis and stomatitis is contraindicated.

CONCLUSIONS

Numerous randomized clinical trials conducted outside the United States point to the efficacy and safety of fluoride varnishes as a caries-preventive agent.
United States point to the efficacy and safety of fluoride varnishes as a caries-preventive agent. The quality of supporting evidence can be considered to be level I, meaning the highest possible level of evidence, according to the system used by the U.S. Preventive Services Task Force. Compared with other topical fluoride vehicles, fluoride varnishes have advantages in terms of safety and ease of application. In addition, the application of fluoride varnishes can be tailored to children who have clinical evidence of high caries attack, such as those with early childhood caries.

Although clinical trial data still need to be submitted to the FDA for clearance of fluoride varnishes as caries-preventive agents, some U.S. dental professionals are using fluoride varnishes in an off-label manner (an accepted practice by which fluoride varnishes could be used for caries prevention in addition to their use in treatment of hypersensitive teeth). In addition, some U.S. dental schools teach the use of fluoride varnishes to their students and provide the varnishes to patients treated in the schools’ clinics.

An important factor involved in the acceptance of fluoride varnishes as fluoride delivery vehicles in both public health and private practice settings is the relationship between cost and their caries-preventive effect. Two Swedish studies have conducted cost analyses of fluoride varnishes, which are of limited applicability to the United States. The current cost of varnish in the United States (about $0.65 per use for Duraflor) is comparable with that of APF gels ($0.55 per use); this small difference is likely to decrease as the cost of varnish decreases with increased use and market competition. As with any preventive strategy, the dental professional’s salary contributes most to the total cost. Some clinical trials have used extended-function dental assistants, dental nurses or dental hygienists to apply the varnish. Cost-effectiveness ratios need to be developed for the United States.

Further research is needed to quantify the efficacy and safety of fluoride varnishes among preschool-aged children (up to age 71 months) at high risk of developing early childhood caries. Research also is needed to test the efficacy of fluoride varnish in preventing root caries and to determine the optimal fluoride concentrations. Lack of FDA clearance of fluoride varnish as a caries-preventive agent and dental professionals’ limited familiarity with the technique and its efficacy may explain why fluoride varnishes have not been more widely used despite their endorsement by dental professionals.

The caries-preventive efficacy of fluoride varnishes is equal to that of other topical fluoride vehicles in school-aged children. The only disadvantage of sodium fluoride varnishes is that they cause a temporary change in tooth color, which dental professionals need to inform their patients of. On the basis of the current evidence, fluoride varnishes can be used effectively as a topical fluoride vehicle to prevent dental caries in school-aged children.

At the time the manuscript was written, Mr. Goldstein was an intern at the Association of Schools of Public Health, Washington, D.C. He currently is a medical student at the University of Louisville, Ky.

Hedm AK. Effect of a fluoride varnish (Duraphat) in preschool children. Community
596 JADA, Vol. 131, May 2000

75. Koch G, Petersson LG, Rydén H. Effect of fluoride varnish (Duraphat) treatment every six months compared with weekly mouthrinses with 0.2 per cent NaF solution on dental caries: a two-year clinical study. Sweden Dent J 1979;3:39-44.